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The lattice and radiation conductivity of thermal barrier coatings was evaluated 
using a laser heat flux approach. A diffusion model has been established to 
correlate the apparent thermal conductivity of the coating to the lattice and 
radiation conductivity. The radiation conductivity component can be expressed as 
a function of temperature and the scattering and absorption properties of the 
coating material. High temperature scattering and absorption of the coating 
systems can also be derived based on the testing results using the modeling 
approach. The model prediction is found to have good agreement with 
experimental observations. 
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— Thermal and environmental barrier coatings help increase gas turbine 
operating temperatures, reduce cooling requirements, improve engine fuel 
efficiency and reliability
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Revolutionary Ceramic Coatings Greatly 
Impact Gas Turbine Engine Technology

— Ceramic thermal and environmental barrier coating system development 
goals
- Meet engine temperature and performance requirements
- Ensure long-term durability
- Improve technology readiness
- Develop design tools and lifing methodologies

— Crucial for envisioned supersonic vehicles: reduced engine emission, 
improved efficiency and long-term supersonic cruise durability



Revolutionary Ceramic Coatings Impact Gas 
Turbine Engine Technology - Continued
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Objectives

• Evaluate thermal conductivity and thermal radiation resistance of 
ceramic coatings at high temperatures (2700-3200°F), under 
realistically thermal gradient conditions

• Facilitate the development advanced thermal and environmental 
barrier coatings

• Improve understanding of the coating thermal radiation performance
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NASA Steady-State Laser Heat-Flux Approach for 
Ceramic Coating Thermal Conductivity Measurements

▬ A uniform laser (wavelength 10.6 µm) power distribution achieved using integrating 
lens combined with lens/specimen rotation

▬ The ceramic surface and substrate temperatures measured by 8 micron and two-color 
pyrometers and/or by an embedded miniature thermocouple 

▬ Thermal conductivity measured at 5 second intervals in real time and thermal cycling 
incorporated
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Ceramic Coating Thermal Conductivity Measurement 
Approach by the Laser High-Heat-Flux Testing
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Thermal Conductivity of Fully Dense Oxides

— The radiation conductivity component evaluated
— Significant conductivity increase due to increased radiation at high 

temperatures especially under thermal gradients
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Thermal Conductivity of Fully Dense Oxides 
(continued)
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— ZrO2-8wt%Y2O3/BSAS/mullite+20wt%BSAS/Si coating on SiC/SiC CMC substrate
— Conductivity determined by a steady-state laser heat-flux technique
— Coating surface radiation can contribute 5-15% total heat transfer at 1650°C

Evaluation of Lattice and Radiation Thermal 
Conductivity of TEBC Systems at High Temperatures
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Radiative Diffusion Models 
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Evaluation of Lattice and Radiation Thermal 
Conductivity of 3000F Coating  Systems
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- Freestanding coatings and gray layer radiative diffusion assumption models



Scattering Component of Plasma-Sprayed Coating  
Systems
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Radiation Component of Ceramic Materials

Average temperature
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— Preliminary results showed doped HfO2 coatings had better radiation 
resistance 

Evaluation of Radiation Flux Resistance of Oxide 
Coating Systems
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Concluding Remarks

• Laser heat-flux approach established for radiation thermal 
conductivity measurements and advanced coating development

• Lattice and radiation conductivity determined for dense materials 
and coatings

• Scattering and absorption determined for coatings under realistic 
thermal gradients at high temperatures

• Advanced coatings promising in reducing radiation conductivity


